Download Automatic synthesis strategies for object-based dynamical physical models in musical acoustics
Current physics-based synthesis techniques tend to synthesize the interaction between different functional elements of a sound generator by treating it as a single system. However, when dealing with the physical modeling of complex sound generators this choice raises questions about the resulting flexibility of the adopted synthesis strategy. One way to overcome this problem is to approach it by individually synthesizing and discretizing the objects that contribute to the generation of sounds. In this paper we address the problem of how to automatize the process of physically modeling the interaction between objects, and how to make it dynamical. We will show that this can be done through the automatic definition and implementation of a topology model that adapts to the contact and proximity conditions between the considered objects.
Download A Frequency Domain Adaptive Algorithm for Wave Separation
We propose a frequency domain adaptive algorithm for wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the separation filter is adapted from the information given by a third microphone. Working in the frequency domain has a series of advantages, among which are the ease of design of the propagation filter and its differentiation with respect to its parameters. Although the adaptive algorithm was developed as a first step for the estimation of playing parameters in wind instruments it can also be used, without any modifications, for other applications such as in-air direction of arrival (DOA) estimation. Preliminary results on these applications will also be presented.